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Abstract. We present detailed calculations for one- and two-photon above-threshold detachment (ATD)
cross-sections of the negative positronium ion Ps−(e+e−e−), below the threshold of Ps(n = 2), using a
configuration interaction (CI) method on a B splines basis. Both the one- and two-photon detachment
cross-sections have a form similar to the corresponding spectra of the H− ion, scaled accordingly. The peak
value of the one-photon cross-section agrees very well with the calculations by Bathia and Drachman [1],
while it differs from those by Igarashi et al. [2], which give a value of 15% lower. Two-photon detachment
cross-sections are also reported.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) –
32.80.-t Photon interactions with atoms – 36.10.Dr Positronium, muonium, muonic atoms and molecules

1 Introduction

The negative positronium ion represents a rather extreme
case of the pure three-body Coulomb problem. Helium
and H−, the two other fundamental cases of this prob-
lem, are objects of continuing attention as they provide
a valuable testing ground for the theoretical and experi-
mental study of the rich variety of phenomena associated
with this problem. Over the years, new dimensions of the
problem have been explored, particularly in helium, in the
context of strong field phenomena. All along, an ongo-
ing search for and development of new theoretical tools,
purely quantum mechanical, semiclassical, or even fully
classical is underway. He and H− place different demands
on a method, since the first is a compact object involving,
however, long Coulomb tails, while H− is more extended,
weekly bound with correlation in the ground state being
far more crucial to its existence in the first place. Ps− rep-
resents an even more extreme case in that direction, with
the added complication of a new term in the Hamiltonian
owing to the fact that there is no heavy nucleus (center of
mass).

Our motivation for undertaking the work that led to
the results presented in this paper came from related work
by other authors [1–6] and our interest in testing new
methods that we have been developing and applying to
a variety of problems. The experimental interest in Ps is
well established. To the best of our knowledge, Ps− for the
moment represents an interesting theoretical problem and

a e-mail: nlambros@iesl.forth.gr

it is in that spirit that we present our results. Presumably,
some day it may also be investigated experimentally.

In order to provide an extensive exploration of the
techniques we use, we have first calculated the basic quan-
tities such as eigenenergies and photodetachment cross-
sections, which have also been calculated by other authors.
Then we have, in addition, calculated two-photon detach-
ment cross-sections which explore different aspects of the
system. Atomic units are used throughout this work.

2 Theory

2.1 Atomic basis

For two-electron atoms, independent-particle-type coor-
dinates (r1, r2) are usually used, where r1 represents the
position vector of electron 1 relative to the nucleus, and r2

represents that of electron 2. The full Hamiltonian in these
coordinates is,

H = − 1
2µ
∇2

1 −
1

2µ
∇2

2 −
1
M
∇1 · ∇2 −

Z

r1
− Z

r2
+

1
r12

,

(1)

where µ is the reduced mass of the electron-nucleus pair,
M the mass of the nucleus and Z is the nuclear charge. In
the usual case of a heavy nucleus (as in the case of H−)
1/M is small, and this term may be neglected or treated
in perturbation theory. But when the three particles are
of comparable masses, as is the case of Ps−, the cross term
−(1/M)∇1 · ∇2 is as important as the other two terms of
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the kinetic energy and it must be included in the calcu-
lations. An additional difference between H− and Ps− is
that the reduced mass µ = M/(1+M) is µ = 1 in the case
of H−, whereas in the case of Ps− it is µ = 1/2. This has
of course been taken into account in the treatment that
follows. Thus, we consider for the Ps−, µ = 1/2, M = 1
and Z = 1.

The negative positronium eigenstates satisfy the eigen-
value equation,[
hPs(r1) + hPs(r2) + V (r1, r2)

]
ΦSL
n(E)(r1, r2) =

ESL
n ΦSL

n(E)(r1, r2), (2)

where ESL
n is the total energy of the system, ΦSL

n(E)(r1, r2)
the LS-uncoupled two-electron state, and hPs(ri), i =
1, 2 . . . the positronium Hamiltonian operator, namely:

hPs(ri) = −∇2
i −

1
ri

(3)

and V (r1, r2) the electron-electron interaction operator,

V (r1, r2) = −∇1 · ∇2 +
1
r12

, (4)

consisting of the “mass” polarization term ∇1 ·∇2 and the
Coulomb interaction term 1/r12 = 1/|r1 − r2|. In order
to solve equation (2), we expand the two-electron eigen-
states ΦSL

n(E)(r1, r2) in the basis of two-electron orbitals
ΨSL
n1l1,n2l2

(r1, r2) [7]:

ΦSL
n(E)(r1, r2) =

∑
n1l1,n2l2

CSL
n(E)(n1l1, n2l2)ΨSL

n1l1,n2l2(r1, r2),

(5)

where CSL
n(E)(n1l1, n2l2) is an eigenvector of the Hamil-

tonian matrix for the nth energy eigenvalue. Here
|CSL
n(E)(n1l1, n2l2)|2 is the probability density for the con-

figuration (n1l1, n2l2) in the nth energy eigenstate. When
E ≤ 0, ΦSL

n(E) represents a bound state of energy E, in-
dexed by the integer n→ n(E), while E > 0 corresponds
to continuum states of the system. The two-electron or-
bital wavefunctions ΨSL

n1l1,n2l2
(r1, r2) are LS-coupled, an-

tisymmetrized products of the one-electron target radial
functions Pnl(r). Considering that the solutions of the one-
electron Hamiltonian are positronium orbitals of the type:

φnlmms(r) =
Pnl(r)
r

Ylm(θ, φ)σ(ms) (6)

the radial functions Pnl(r) satisfy the equation [8]:[
− d2

dr2
− 1
r

+
l(l + 1)
r2

]
Pnl(r) = εnl Pnl(r), (7)

with εnl being the eigenvalue. The Pnl(r) functions with
negative or positive eigenvalues are expanded in terms of
a set of B-splines of order k and total number N de-
fined in the finite interval [0, R]. This way, we lead to

a generalized matrix equation for the expansion coeffi-
cients, where a simple diagonalization is performed [9–11].
The negative-energy solutions correspond to bound one-
electron orbitals, while the positive-energy solutions cor-
respond to discrete continuum eigenstates, all normalized
to unity.

2.2 Structure

2.2.1 Ground state

For the calculation of one-photon detachment, the order of
B-splines was k = 9 with Nb = 42 and R = 150. The knot
sequence that we have used was sine-like, first used by
Tang and Chang [9] in calculations of multiphoton pro-
cesses. The total number of configurations for the sym-
metries L = 0, 1, 2 was about 2 000 and the maximum
number of one-electron partial waves l1, l2 was 4. With
these parameters the value of the ground state differs by
about 1% in most of our calculations from the most ac-
curate value E = −0.262 005 070 232 957 to date [15]. In
contrast of the negative hydrogen case, where with a sim-
ilar in size basis would have cover only 90% of the ground
state energy value, sufficient accuracy in the ground state
of negative positronium is achieved. This is due to the ex-
tra term −∇1 ·∇2, appearing in the negative positronium
Hamiltonian, which is opposite in sign to the “traditional”
1/r12 CI term. For example, the two-electron wavefunc-
tions for the S symmetry are constructed including config-
urations of the type (ns)2, (np)2, (nd)2, (nf)2, (ng)2 with
n = 1, 2, ..., 60. The matrix elements of the CI terms (see
Eq. (4)) 1/r12 and −∇1 · ∇2 between the two-electron
orbitals ΨL=0

1s2 , ΨL=0
2p2 are, 〈1s2|1/r12|2p2〉 = 0.059 13 and

〈1s2| −∇1 · ∇2|2p2〉 = −0.067 58, respectively. In the case
of negative hydrogen, the latter term (mass polarization)
is insignificant compared to 1/r12 (Coulombic) term. This
holds for any matrix element between non-equivalent con-
figurations. The same matrix elements between equivalent
configurations is zero for the mass polarization term, due
to angular momentum selection rules, while is not vanish-
ing for the 1/r12 term.

2.2.2 Continuum states

The discrete continuum state function ΦSL
n(E)(r1, r2), cor-

responding to total energy E, above the first ionization
threshold, is constituted by a series of doubly excited au-
todetachment states embedded in the single continuum
open channel 1sl, which formally, can be separated in two
parts:

ΦSL
n(E)(r1, r2) = φSL

E,1sl(r1, r2) +
∑
n0l0l′

φSL
E,n0l0l′(r1, r2),

(8)

where φSL
E,1sl(r1, r2) represents the ionization channel and

φSL
E,n0l0l′

(r1, r2) the total contribution from all closed
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channels. The ionization channel, by inspecting equa-
tion (5) is the sum of all the 1sl configuration series,

φSL
E,1sl(r1, r2) =

∑
n

CSL
E (1s, nl)ΨSL

1s,nl(r1, r2), (9)

which may be expressed in the form of a Slater determi-
nant φSL

1sφkl
(r1, r2), where one of the hydrogenic functions

are replaced by the one-electron radial function,

φSL
E,kl(r) =

∑
n

CSL
E (1s, nl)Rnl(r). (10)

The latter numerical radial wavefunction, represents the
scattering wavefunction, as obtained through the diago-
nalization procedure, and contains all the interchannel
couplings are represented by the energy dependent co-
efficients CSL

E (1s, nl). The obtained numerical wavefunc-
tions φSL

E,kl(r) are matched at the boundaries of the box R
against the asymptotic expression that an outgoing l elec-
tron with momentum k should satisfy, as employed by
Burgess [12],

φkl(r →∞)→ A

√
k

ζ(r)
sin (δ(r) + δl(k)) , (11)

with ζ and φ function of r, which in the highly asymptotic
region satisfy (r →∞),

ζ(r)→ k,

δ(r)→
[
kr +

qeff

k
log(2kr)− lπ

2
+ argΓ

(
l + 1− i

qeff

k

)]
,

(12)

where qeff = 0, in the present case, is the effective nu-
clear charge experienced by the outgoing electron and
δl(k) is the short-range scattering phase shift. The normal-
ization amplitude A, which represents the usual normal-
ization constant (2/πk)1/2 in the case of the discretized
continuum function, and the scattering short-range phase
shift δl(k), are obtained simultaneously after this match-
ing of the numerical scattering radial function and the
analytical asymptotic expression (11).

At this point we would like to clarify the limits of the
validity of the asymptotic expression (11) that an out-
going electron of angular momentum l and momentum k
should satisfy in the case of negative positronium. The ex-
tra term, compared to helium or the negative hydrogen, is
the mass polarization term −∇1 · ∇2, whose influence we
now examine. In order to separate the radial and angular
part of this operator, we write its tensorial form, namely:

HM = −∇1 · ∇2 = −∇r1∇r2C(1)(1) ·C(1)(2), (13)

where C(1)(i), i = 1, 2 are renormalized spherical har-
monic tensor with components as given by C

(1)
q (θ, φ) =√

4π/3 Y1q(θ, φ), q = 1, 0,−1, and ∇ri , i = 1, 2 the one-

electron radial operators,

〈nl|∇ri |n′l′〉 =
∫ ∞

0

drPnl

[
d

dri

− l(l+ 1)− 2− l′(l′ + 1)
2ri

]
Pn′l′(r), (14)

where l = l′ ± 1.
Assuming now single-channel ionization into |1skp〉

continuum, we can see that the value of the matrix el-
ement 〈1skp|−∇1 ·∇2|1sk′p〉 depends on the one-electron
radial integrals 〈1s|∇r|kp〉, 〈1s|∇r|k′p〉, which given the
bound orbital P1s(r), their values are basically determined
in the core region. In this case, one can assume that for
such states the asymptotic form (Eq. (11)) may be used
for obtaining the correct normalization of the continuum
states of negative positronium. The situation, however, is
quite different, when the photon energy is sufficient for
the excitation of more than one channels. For instance,
the interchannel coupling between |1skp〉 and |2pk′s〉, due
to mass polarization term, may not vanish even in the
asymptotic region. In this case, a transformation of the
Cartesian coordinates (r1, r2) to Jacobi coordinates [5] is
the appropriate one for satisfying the correct asymptotic
conditions.

2.3 Photodetachment cross-sections

The transition probability per unit time within lowest
non-vanishing order of perturbation theory for non res-
onant N photon ionization can be written as:

W
(N)
fg = σ̂NI

N , (15)

where σ̂N is the total angle-integrated generalized cross-
section given by [13]:

σ̂N = π(2 π α)N∆EN
∑
Lf

∣∣∣D(N)
Lf

∣∣∣2 , (16)

where ∆E = ω(ω−1) in the length(velocity) gauge, ω be-
ing the photon energy, α being the fine structure constant
and D

(N)
Lf

is the N -photon transition amplitude in which
the final state is of the form |SL〉,

D
(N)
Lf
≡
∑
νN−1

· · ·

×
∑
ν1

〈SLf |D|νN−1〉 · · · 〈ν1|D|g〉
[ωg + (N − 1)ω − ωνN−1 ] · · · [ωg + ω − ων1 ]

, (17)

with D the atomic dipole moment operator that can be
expressed either in the length (D = rê, ê is the polariza-
tion vector) or in the velocity gauge (D = ê∇). The sum-
mations are carried over all possible intermediate states
including the discrete and continuous parts of the atomic
spectrum. The generalization of equation (17) to above
threshold detachment of order N + R, where N photons
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Fig. 1. Photodetachment cross-section in 10−17 cm2 for one
photon absorption in both length and velocity gauge.

are needed to ionize the atom plus R extra photons which
are absorbed in the continuum, involves the presence of
poles in the integral. In that case, equation (17) requires
the removal of the poles from the real axis through quan-
tities εi and taking their limits to zero [14].

The unknown quantities are the D(N)
Lf

for each ioniza-
tion channel. In order to calculate the summations over
intermediate states in the ATD case, we use the recently
developed extrapolation method whose details can be
found in [14]. Because of the discretization of the con-
tinuum, the detachment rates are calculated for discrete
energies. Consequently, these rates in general do not coin-
cide for different channels. For the energy region that we
examine, the smoothness and density of data points are
sufficient to use a cubic spline interpolation in order to
obtain data for intermediate energies.

3 Results

3.1 One-photon detachment

The calculated total one-photon detachment cross-section,
as given by equation (16) for N = 1, is shown in Figure 1
below a photoelectron energy of 4 eV. Compared with
the corresponding spectra for H− [9], one-photon cross-
sections of Ps− appear qualitatively similar. In particular,
in the above figure, the abrupt rising of the cross-section
for photon energies near the ionization potential of Ps−
is evident, (as in the case of H−), in accordance with the
Wigner law, σl ∼ εl+1/2, with ε being the photoelectron
energy. This particular behavior for negative ions origi-
nates from the absence of a long range Coulomb potential
for the outgoing photoelectron. The cross-section reaches
its maximum for photoelectron energy at about 0.34 eV,
the ionization potential of Ps−. For higher energies, but

below the second ionization threshold, the detachment
rate decreases gradually as in the case of H−. The agree-
ment between length and velocity gauge is satisfactory
throughout the energy region below the resonances, that
begin appearing at 5.1 eV.

Comparing our results with previous works, one pho-
ton cross-sections agree very well with those obtained by
Bhatia and Drachman [1], using an Hylleras-type wave-
function for the ground state and one-electron active
model for the final states. Note that in their study they
have plotted the photodetachment cross-sections of Ps−
together with the corresponding results for H−, which re-
veals a scaling factor∼ 2 between them. Recently, Igarashi
et al. [4] used a close-coupling method with a B-spline
expansion and calculated the off resonance Ps− photode-
tachment cross-sections below the Ps(n = 2) first ioniza-
tion threshold. Their results, as well as the cross-sections
of one more recent calculation, carried out by Igarashi
et al. [2] by means of hypersherical close-coupling method,
are in good agreement with the present results below
0.3 eV and above 3 eV. However, they are different up
to the cross-section maximum where the cross-section of
Igarashi et al. is about 15% smaller than the present re-
sult. Similar calculations by Ward et al. [3], also give a
peak value of the one-photon cross-section in agreement
with that of Igarashi et al., however they disagree ap-
preciably in higher photon energies, below to Ps(n = 2)
threshold [2].

3.2 Two-photon detachment

For the case of two-photon detachment in the photoelec-
tron energy region (0−1.5 eV), is possible to have one
excess photon absorption. From the dipole selection rules,
the number of independent channels are two, with final
total angular momenta L = 0, 2 (i.e., S and D). The or-
der of the process now is higher than for the one photon
case and we need to enlarge the atomic basis in order
to preserve the reliability of the calculations. The reason
for this is that the extrapolation method [14] we use de-
mands a sufficiently high density of states in the energy
region where the poles occur. The suitable density of states
depends also on the photon energy, independently of the
order of the process. Consequently we enlarge the box ra-
dius to 450 and at the same time we improve the quality
of the B-splines set taking k = 9, Nb = 452 and a knot
sequence that is dense in the energy region close to the
nucleus and decreases nearly linearly far away from the
nucleus. All calculations have been performed in both
the length and velocity gauge and give identical results
for the energy region under consideration.

In Figures 2 and 3, we show, for linearly polarized
light, the partial photodetachment cross-sections σ(2)(S)
and σ(2)(D) for the S and D waves, respectively. Those
cross-sections are defined by [8,16]:

σ(2)(i) = π(2πα)2∆E2|D(2)
Li
|2 Li = 0, 2. (18)

At photoelectron energy 0.19 eV a dip in the detach-
ment cross-section is apparent for the S wave. At this



K. Maniadaki et al.: One and two-photon detachment cross-sections of Ps− 209

0.15 0.65 1.15 1.65 2.15
Photoelectron Energy (eV)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
w

o−
P

ho
to

n 
C

ro
ss

 s
ec

tio
n 

(a
.u

.) S−wave, Length
S−wave, Velocity

Fig. 2. Photodetachment partial cross-sections in a.u. for S-
wave for two photon absorption in length and velocity gauge.
Energy region covers detachment with and without ATD,
which begins at photoelectron energy ∼ 0.19 eV.
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Fig. 3. The same as Figure 2 for D-wave.

photon energy, detachment is allowed with the absorp-
tion of one photon only (ATD case) instead of two, and
this channel opening gives rise to the increment of the
cross-section. This is mostly apparent in the S wave in-
stead of the D wave because of the Wigner threshold law,
mentioned previously for the one-photon absorption. A
similar in nature dip is reported in the calculation of the
two-photon detachment cross-sections by Proulx et al. [17]
and Nikolopoulos and Lambropoulos [13].

Comparing our results of Ps− with those of H− [13],
the existence of a scaling factor ∼ 102 is evident. This
factor seems to be as expected according to the simple

scaling law between Ps and H [16]:

σ(2)(i, ω) = 27σ(2)(i, 2ω) i = S,D (19)

for two-photon detachment (N = 2). Of course, here, the
contribution of 1/r12 −∇1 · ∇2 in the relation (1) should
be assumed small enough so as to use the scaling law be-
tween Ps and H instead of Ps− and H−.

4 Conclusion

While most previous studies were aimed at presenting
one-photon cross-sections, the present method enables
one to produce results for multiphoton detachment cross-
sections. The one-photon cross-sections of Ps− calculated
here, are compared with previous studies as well as with
the corresponding spectra for the H− ion.

Although overall agreement with existing calculations
has been found, small but non-trivial differences do ap-
pear, undoubtedly due to the differences in the methods of
calculation. It seems rather unlikely that differences in the
energy of the delicate ground state are the main reason.
In any case, this underlines the usefulness of this system
as testing ground for methods.

To the best of our knowledge, this is the first study
of two-photon detachment cross-sections of the negative
positronium ion. Thus, on our attempt to compare our re-
sults with previous studies, we assume that the contribu-
tion of 1/r12−∇1 ·∇2 in the relation (1) can be neglected,
and we use the scaling laws between Ps and H, to compare
corresponding results for Ps− and H−.
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